

Published on Web 10/06/2004

Chelation-Assisted Hydrative Dimerization of 1-Alkyne Forming α , β -Enones by an Rh(I) Catalyst

Young Jun Park, Bong-Il Kwon, Jeong-Ae Ahn, Hyuk Lee, and Chul-Ho Jun*

Department of Chemistry and Center for Bioactive Molecular Hybrid (CBMH), Yonsei University, Seoul 120-749, Korea

Received July 14, 2004; E-mail: junch@yonsei.ac.kr

Alkyne is one of the interesting substrates in the transition-metalcatalyzed reaction since it can be transformed into a wide range of synthetically important intermediates.¹ In the course of our ongoing studies of hydroacylation of alkyne with aldehyde using a catalytic system of Rh(I) and 2-aminopicoline, as well as the related reaction,² we found that α,β -enones could be directly formed from two 1-alkyne molecules and H₂O using the same catalysts (eq 1). Some of the very few examples of the transition-metal-catalyzed alkyne dimerization utilizing H₂O include the following: the Ru-catalyzed hydrative diyne cyclization,³ the propargyl alcohol dimerization,⁴ and the stoichiometric reaction forming Rh-bound enones.⁵ In this communication, we wish to report a novel catalytic intermolecular hydrative dimerization of 1-alkyne and a preliminary investigation into the roles of catalysts.

When the reaction experiment of 1-octyne (**1a**) and H₂O was carried out using the catalytic system of **2**, **3**, and **4** in THF at 110 °C for 2 h, a mixture of branched α,β -enone **5a** and linear enone **6a** was obtained in an 82% isolated yield with approximately a 4:1 ratio (Table 1, entry 1).⁶ Other 1-alkynes were also applied in this experiment, and it was found that secondary, as well as primary, aliphatic 1-alkynes underwent the same reaction to produce α,β -enones that favor the branched isomer **5** over the linear isomer **6** in good to moderate yields (entries 1–5).⁷ However, with a tertiary 1-alkyne, such as 2,2'-dimethylpropyne (**1f**), the linear α,β -enone (**6f**) was isolated exclusively without producing the branched isomer **5** (entry 6). These results imply that a branch:linear ratio seems to be controlled by the alkyl substituent of 1-alkyne.

It is interesting to note that the three components of **2**, **3**, and H₂O are all essential to the production of the hydrative dimerization compounds of 1-alkyne (Table 2). Without any one of these, no desired α,β -enones were obtained (entries 2–4). 2-Amino-3-picoline (**3**) played an important role in this hydrative dimerization of 1-alkyne since without **3**, only enynes,⁸ the direct dimerization products of 1-alkyne, were isolated, and it was also noteworthy that the resulting enynes were not involved in this transformation (entry 3).⁹

The position and existence of the methyl group in **3** are not critical for yielding α,β -enones, except for the 6-position on the pyridine ring (Table 3, entries 1–5). However, the 2-position of the primary amino group on the pyridine ring is essential for performing the reaction (Table 3, entries 6–8).

Table 1. Hydrative Dimerization of Various 1-Alkyne

Alkyne (1)	Yield(%) ^b	(5/6) ^c
<i>n</i> -C ₆ H ₁₃ ==	(1a)	82	(5a/6a : 78/22)
<i>n</i> -C ₄ H ₉	(1b)	63	(5b/6b : 84/16)
<i>n</i> -C ₇ H ₁₅ -===	(1c)	67	(5c/6c : 78/22)
<i>n</i> -C ₈ H ₁₇ —==	(1d)	72	(5d/6d : 75/25)
Су—	(1e)	66	(5e/6e : 75/25)
t-Bu──	(1f)	59 ^d	(5f/6f : 0/100)
	Alkyne (1 n-C ₆ H ₁₃	Alkyne (1) $n-C_6H_{13}$ (1a) $n-C_4H_9$ (1b) $n-C_7H_{15}$ (1c) $n-C_8H_{17}$ (1d) Cy (1e) t-Bu (1f)	Alkyne (1) Yield(%) ^b $n-C_6H_{13}$ (1a) 82 $n-C_4H_9$ (1b) 63 $n-C_7H_{15}$ (1c) 67 $n-C_8H_{17}$ (1d) 72 Cy (1e) 66 t-Bu (1f) 59 ^d

^{*a*} Reaction conditions: 0.432 mmol of 1-alkyne, 5 mol % **2**, 100 mol % **3**, 100 mol % H₂O, 5 mol % **4**, THF (0.22 mL), 110 °C (bath temp), 2 h. ^{*b*} Isolated yield. ^{*c*} Determined by GC. ^{*d*} A mixture of enone and ketimine (1:9).

Table 2. Reaction of 1a with Various Reaction Conditions^a

entry	catalytic system	product	yield of $lpha,\!eta$ -enones (%) b
1	2/3/H ₂ O/4	α,β-enones	$82^c \\ 0 \\ 0^d \\ <1^e$
2	3/H ₂ O/4	none	
3	2/H ₂ O/4	enynes	
4	2/3/4	α,β-enones	

^{*a*} Reaction conditions: 0.432 mmol of **1a**, 5 mol % **2**, 100 mol % **3**, 100 mol % H_2O , 5 mol % **4**, THF (0.22 mL), 110 °C (bath temp), 2 h. ^{*b*} GC yield. ^{*c*} Isolated yield. ^{*d*} Mixture of 65% 1-octyne and 35% enynes, only. ^{*e*} Only 80% 1-octyne remained.

Table 3. Reaction of 1a with Various Amines

Entry	amine	yie	d(%) ^a (5a/6a)	Entry	amine	yield(%) ^a (5a/6a)
1		3 ⊣₂	82 (78/22)	5		0 51 (75/25) IH ₂
2		7 H2	65 (83/17)	6		IH ₂ 1 ^{0°}
3		8 H ₂	50 (74/26)	7		2 0 ^c IH ₂
4		9 H ₂	<5 ^b	8		- 3, Me 0 [°]
					N N	// 0

^a Isolated yield. ^b GC yield. ^c Enynes only.

On the basis of the above observations, we speculate that the following mechanism for the hydrative dimerization of 1-alkyne is taking place, though other reaction routes cannot be excluded (Scheme 1).

Initially, a Rh(I)—vinylidene complex (14), a common intermediate for the transition-metal-mediated reaction of 1-alkynes, might be generated from 1-alkyne 1 and complex 2.¹⁰ A direct attack of 3 to 14 in 15 leads to the iminoacylrhodium(III)—hydride complex Scheme 1. Proposed Mechanism of the Hydrative Dimerization of 1-Alkyne

19 through intermediates 16 and 17.11 Carbometalation of 1-alkynes 1 with 19 followed by the coordination-site slippage in 20A and 20B to 21A and 21B, respectively, gives the five-membered metallacycles, 22A and 22B, respectively.⁵ Reductive elimination and subsequent hydrolysis of 22A and 22B furnishes α,β -enones 5 and 6, respectively.

The proposed elementary steps, such as 15, 16, and 17, were supported by the reaction of 1-decyne (1d) with 2-N-methylaminopyridine (23) instead of 3, giving enamine 18 and its hydrolysis product 24 (eq 2).¹² Furthermore, the deuterium experiment using D-substituted 1-decyne clearly exhibited the expected deuterium incorporation (the distribution ratio of the aldehyde proton and the α proton was 0.4:0.6) in 24 via one β -hydrogen (or deuterium) migration in 16 to the rhodium center, giving 17 (see the Supporting Information for the ²H NMR spectrum of **24**).¹³

Intermediate 19 was trapped with the excessive use of 1-hexene by employing a 1:6 ratio of 1a/1-hexene to give 7-tetradecanone (25) in a 9% yield along with a 41% yield of 5a/6a (4:1), which was determined by GC-MS, inferring that 1-alkyne is much more reactive than 1-alkene in this reaction (eq 3).

The carbometalation of 1-alkyne into 19 may explain the major formation of the branched α,β -enone **5** over the linear enone **6** since the observed ratio seems to be determined by the delicate balance between the steric interaction in 20A and 20B (Scheme 1). Thus, in the case of a tertiary 1-alkyne, such as 1f, which would exert a maximum steric hindrance as in 20A, the formation of the single isomer of the linear α,β -enone **6f** could be explained.

In summary, the chelation-assisted catalytic system with Rh(I)/2amino-3-picoline underwent an intermolecular hydrative dimerization reaction of 1-alkyne to give α,β -enones. This transformation represents a new reaction pathway for the synthesis of α,β -enones directly from 1-alkynes. More detailed mechanistic studies are underway.

Acknowledgment. This work was supported by the National Research Laboratory (NRL) (2000-N-NL-01-C-271) Program administered by the Ministry of Science and Technology and CBMH.

Supporting Information Available: Experimental details and characterization data for compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) For recent reviews, see: (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079–3159. (b) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368–3398. (c) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731-1769.
- (a) Jun, C.-H.; Lee, H.; Hong, J.-B.; Kwon, B.-I. Angew. Chem., Int. Ed. **2002**, *41*, 2146–2147. (b) Lee, D.-Y.; Hong, B.-S.; Cho, E.-G.; Lee, H.; (2)Jun, C.-H. J. Am. Chem. Soc. 2003, 125, 6372-6373
- (3) (a) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2003, 125, 11516-11517.
- (b) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2002, 124, 4178–4179. Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2001, 123, 8862–8863. (5)
- Ogata, K.; Kuge, K.; Tatsumi, K.; Yamamoto, Y. Chem. Commun. 2002, 128 - 129
- (6) (a) A typical procedure includes a screw-capped pressure vial (1 mL) charged with 0.432 mmol of 1a, 5 mol % 2, 100 mol % 3, 5 mol % 4, 100 mol % H₂O, and 0.22 mL of THF as a solvent. The mixture was stirred for 2 h in an oil bath that was preheated to 110 °C. After purification by column chromatography, an 82% isolated yield (based on 1a) of 5a and **6a** was obtained in a 4.1 ratio (determined by GC). (b) Among various solvents (toluene, DMF, acetone, etc.), temperatures (80-150 °C), and quantities of reagents (**3**, **4**, and H₂O) that were examined, the above reaction conditions gave the best results. (c) Without benzoic acid, the yield and the conversion rate were halved (36% GC yield).
- (a) In all of the cases, the conversion rate of 1-alkyne was >98% (GC). (7)Along with major α,β -enones, small amounts of side products were also observed. For examples, such as enynes (<2%), vinylic ester of benzoic acid (<2%), and the (Z) form of α,β -enone (<4%), which may originate from the isomerization reaction by the Rh-H species, see: Jun, C.-H.; Crabtree, R. H. J. Organomet. Chem. **1993**, 447, 177–187. (b) For the Rh(I)-catalyzed vinyl ester formation of terminal alkynes, see: Bianchini, C.; Meli, A.; Peruzzini, M.; Zanobini, F.; Bruneau, C.; Dixneuf, P. H. *Organometallics* **1990**, *9*, 1155–1160. (c) The reaction with internal alkynes or functionalized alkynes, such as phenylacetylene, 6-hydroxyhexyne, and 5-cyanopentyne, was unsuccessful. (d) When the reaction of 1-alkyne with an internal alkyne, such as 1-hexyne with 4-octyne, was performed, a mixture of homocoupled products of 1-alkyne and crosscoupled products were obtained.
- (8) For examples of the Rh(I)-catalyzed dimerization of terminal alkynes, For examples of the Kn(1)-catalyzed dimerization of terminal alkynes, see: (a) Ohshita, J.; Furumori, K.; Matsuguchi, A.; Ishikawa, M. J. Org. Chem. 1990, 55, 3277–3280. (b) Schmit, H. J.; Singer, H. J. Organomet. Chem. 1978, 153, 165–179. (c) Boese, W. T.; Goldman, A. S. Organometallics 1991, 10, 782–786. (d) Schaefer, M.; Mahr, N.; Wolf, J.; Werner, H. Angew. Chem., Int. Ed. Engl. 1993, 32, 1315–1318. (e) Tanaka, K.; Shirasaka, K. Org. Lett. 2003, 5, 4697–4699.
- When the further reaction experiment was performed with the addition of 3 to the reaction mixture in entry 3 (Table 2), a mixture of 5a and 6a
- (10)D.; Pérez, J.; Riera, V.; Miguel, D. Organometallics 2001, 20, 2775-2781.
- (11) Rüba, E.; Hummel, A.; Mereiter, K.; Schmid, R.; Kirchner, K. Organometallics 2002, 21, 4955-4959.
- (12) In this case, the pyridine ring was also essential to obtain 18 and the anti-Markovnikov's hydration product of 1-decyne, **24**. For transition-metal-catalyzed anti-Markovnikov's hydration of 1-alkyne, see: (a) Grotjahn, D. B.; Incarvito, C. D.; Rheingold, A. L. Angew. Chem., Int. Glodani, J. J., Internet, C. J., Katangar, M., Wakatsuki, Y. Angew. Chem., Int. Ed. 1998, 37, 2867–2869. (c) Suzuki, T.; Tokunaga, M.; Wakatsuki, Org. Lett. 2001, 3, 735–737. (d) Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.; Horiuchi, A.; Wakatsuki, Y. J. Am. Chem. Soc. **2001**, *123*, 11917–11924 and references therein.
- Because of the fast H/D exchange between water and 1-alkyne under typical reaction conditions, the hydrative dimerization using 1D-alkyne or D₂O was not informative

JA045789I